Simplified p-norm-like Constraint LMS Algorithm for Efficient Estimation of Underwater Acoustic Channels

نویسندگان

  • F. Y. Wu
  • Y. H. Zhou
  • F. Tong
  • R. Kastner
چکیده

Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic l0 and l1 norm constraint LMS algorithms, the p-norm-like (lp) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration method to approximate the decimal exponential calculation. Numerical simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation

In order to improve the sparsity exploitation performance of norm constraint least mean square (LMS) algorithms, a novel adaptive algorithm is proposed by introducing a variable p-norm-like constraint into the cost function of the LMS algorithm, which exerts a zero attraction to the weight updating iterations. The parameter p of the p-norm-like constraint is adjusted iteratively along the negat...

متن کامل

A new joint channel equalization and estimation algorithm for underwater acoustic channels

Underwater acoustic channel (UAC) is one of the most challenging communication channels in the world, owing to its complex multi-path and absorption as well as variable ambient noise. Although adaptive equalization could effectively eliminate the inter-symbol interference (ISI) with the help of training sequences, the convergence rate of equalization in sparse UAC decreased remarkably. Besides,...

متن کامل

Decision Feedback Blind Equalization Based on Recurrent Least Squares Algorithm for Underwater Acoustic Channels

The cost function of constant modulus algorithm (CMA) is simplified to meet second norm form, and the blind equalizer can use recurrent least squares (RLS) algorithm to update the weights. Considering the underwater acoustic channel is usually nonlinear, decision feedback equalizer is used as the blind equalizer. According to the simplified cost function of CMA, the weights of forward part and ...

متن کامل

Extra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm

The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty...

متن کامل

Least Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation

Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013